REQUIREMENTS FOR THE BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING/MASTER OF SCIENCE

B.S. Portion of the Program Accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org

GALLOGLY COLLEGE OF ENGINEERING

THE UNIVERSITY OF OKLAHOMA

FOR STUDENTS ENTERING THE OKLAHOMA STATE SYSTEM FOR HIGHER EDUCATION

SUMMER 2018 THROUGH SPRING 2019

GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>ENGL 1113, Prin. of English Composition (Core I)</td>
<td>3</td>
<td>ECE 1233, Programming for Non-Majors with C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>*CHEM 1315, General Chemistry (Core II)</td>
<td>5</td>
<td>ECE 3333, Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 1483, U.S., 1492-1865, or</td>
<td>3</td>
<td>ECE 3311, Electrical Circuits I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1493, U.S., 1865-Present (Core IV)</td>
<td>3</td>
<td>ECE 4000-level or higher Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1914, Differential and Integral Calculus I (Core I)</td>
<td>4</td>
<td>MATH 5000-level or higher Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 1411, Freshman Engineering Experience</td>
<td>1</td>
<td>Approved Elective, Core IV: Social Science</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
<td>TOTAL CREDIT HOURS</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL ENGINEERING/MASTER OF SCIENCE - A350

Bachelor of Science in Electrical Engineering/Master of Science (Elec. & Comp. Engr.) F350

OU encourages students to complete at least 29 hours of applicable coursework each year to have the opportunity to graduate in five years.

Yearly Breakdown

FRESHMAN

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>ENGL 1113, Prin. of English Composition (Core I)</td>
<td>3</td>
<td>ECE 1233, Programming for Non-Majors with C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>*CHEM 1315, General Chemistry (Core II)</td>
<td>5</td>
<td>ECE 3333, Linear Algebra I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 1483, U.S., 1492-1865, or</td>
<td>3</td>
<td>ECE 3311, Electrical Circuits I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1493, U.S., 1865-Present (Core IV)</td>
<td>3</td>
<td>ECE 4000-level or higher Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1914, Differential and Integral Calculus I (Core I)</td>
<td>4</td>
<td>MATH 5000-level or higher Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 1411, Freshman Engineering Experience</td>
<td>1</td>
<td>Approved Elective, Core IV: Social Science</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
<td>TOTAL CREDIT HOURS</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>PHYS 2524, General Physics for Engineering & Science Majors</td>
<td>3</td>
<td>ECE 3311, Electrical Circuits I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 2934, Differential and Integral Calculus III</td>
<td>4</td>
<td>ECE 3873, ECE Electronics Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 2214, Intro. to Digital Design</td>
<td>2</td>
<td>Approved Elective, Core III: Social Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 2002, Professional Development</td>
<td>2</td>
<td>Approved Elective, Core IV: Artistic Forms</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>17</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>ECE 3223, Modern Physics for Engineers</td>
<td>3</td>
<td>MATH 3313, Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 3813, Introductory Electronics</td>
<td>3</td>
<td>Approved Elective, Core IV: Western Civ. & Culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 3613, Electromagnetic Fields I</td>
<td>3</td>
<td>Approved Elective, Core IV: Artistic Forms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 3723, Electrical Circuits II</td>
<td>3</td>
<td>Approved Elective, Core IV: Non-Western Culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 3773, ECE Circuits Laboratory</td>
<td>3</td>
<td>Approved Elective, Core IV: Non-Western Culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 4000-level or higher Elective</td>
<td>3</td>
<td>Approved Elective, Core IV: Western Civ. & Culture</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>ECE 3333, Linear Algebra I</td>
<td>3</td>
<td>ECE 4773, Laboratory–Special Projects (Capstone)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 4000-level or higher Elective</td>
<td>3</td>
<td>Approved Elective, Core IV: Western Civ. & Culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 5000-level or higher Elective</td>
<td>3</td>
<td>Approved Elective, Core IV: Non-Western Culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 4773, Laboratory–Special Projects (Capstone)</td>
<td>3</td>
<td>Approved Elective, Core IV: Artistic Forms</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

FIFTH YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td>ECE 4000/5000 Electives</td>
<td>6</td>
<td>ECE 5980, Research for Master’s Thesis, and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 5000 or higher Elective, or</td>
<td>6</td>
<td>Approved Elective, Core IV: Non-Western Culture</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>9</td>
<td>TOTAL CREDIT HOURS</td>
<td>9-12</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Engineering transfer students may take ENGR 3511 in place of ENGR 1411.

Courses designated as Core I, II, III, IV, or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list.

*CHEM 1315 can be substituted with CHEM 1335 (Fall only).

Students must successfully complete prerequisite courses (with a minimum C grade) before proceeding to the next course.

- Two college-level courses in a single foreign language are required; this may be satisfied by successful completion of 2 years in a single foreign language in high school. Students who must take foreign language at the University will have an additional 6-10 hours of coursework.

Electives to be selected from list available in the ECE Office, DEH-150.

*Fourth and fifth year electives (G4000 or higher, including technical electives for MS) must satisfy MSECE Approved Requirements.

*Thesis option requires nine hours; non-thesis requires 12 hours.

MATH 1823, 2423, 2433, and 2443 sequence can be substituted for MATH 1914, 2924, and 2934.
COURSES IN CHEMISTRY AND BIOCHEMISTRY (CHEM)
1315 General Chemistry. Prerequisite: Mathematics 1503 or 1643, or math ACT equal to or greater than 23. General Chemistry is an overview of the chemical basis of natural phenomena. First of a two-semester sequence in general chemistry. Topics covered: basic measurement, atomic theory, electron configuration, periodicity, chemical reactivity and energetics, stoichiometry, gas laws and changes in state, bonding and molecular structure. A student may not receive credit for this course and CHEM 1335. Laboratory. (F, Sp, Su) [II-LAB]

COURSES IN COMPUTER SCIENCE (C S)
1313 Programming for Non-Majors with C. Prerequisite: Prerequisite: MATH 1523 or concurrent enrollment. Introduction to the design and implementation of computer programs. Emphasis on problem solving. Topics include: variables and constants, arithmetic and Boolean expressions, conditional statements, loops, procedures and functions, arrays, standard libraries, input and output, structures, and program documentation. (F, Sp, Su)

COURSES IN ELECTRICAL AND COMPUTER ENGINEERING (ECE)
2214 Digital Design. Prerequisite: MATH 1823 or MATH 1914. Number systems, Boolean algebra, minimization procedures, combinational logic functions, introduction to sequential logic design, finite state machines and clocked (synchronous) sequential circuits. Analysis, synthesis and implementation are appropriately emphasized. (F, Sp)

2523 Probability, Statistics and Random Processes. Prerequisite: ECE major or minor; MATH 2433 or MATH 2924. Covers the role of statistics in electrical and computer engineering and includes substantial exposure to applications appropriate to the discipline: basic probability; random variables, vectors and processes; time averages, expectations and laws of large numbers; stationarity, autocorrelation and spectral analysis; minimum mean squared error estimation; detection and linear filtering; IID, Markov, independent increment, counting, Gaussian and Poisson random processes. (F, Sp)

2713 Digital Signals and Filtering. Prerequisites: ENGR 1411 or ENGR 3511 or concurrent enrollment; CS 1313 or CS 1323 or concurrent enrollment; and MATH 2423 or 2924. Digital signals and filtering, discrete Fourier A and Z transforms, sampling. (F, Sp)

2723 Electrical Circuits I. Prerequisites: ECE 2713 or concurrent enrollment in ECE 2723; MATH 2423 or 2924; PHYS 2524. Introduction to circuit elements and the laws of electrical science. Loop and nodal analysis solution methods. Thevenin and Norton equivalent circuits. Superposition and source transformation methods. Laplace transform analysis of electrical circuits. Guest lectures introducing advanced topics. (F, Sp)

†G3113 Energy Conversion I. Prerequisite: ECE 2723 and ECE 3613. Survey of methods of energy conversion: field-energy force relationships, equations of motion, incremental motion transducers, transformer theory; introduction to rotating machines. (Sp)

3223 Microprocessor System Design. Prerequisite: ECE 3773 or concurrent enrollment. Review of closed sequential circuits; MSI/LSI devices and applications, including registers, bus, combinational functions; use of microprocessors and logic design using microprocessors. Emphasizes assembly of full functional units into workable systems. (F, Sp)

†G3323 Introduction to Solid State Electronic Devices. Prerequisite: 3613. Introduction to quantum mechanics, crystal properties and growth of semiconductors, energy bands in solids, charge carriers in semi-conductors, excess carriers in semiconductors, and introduction to diodes and transistors. (F, Sp)

3613 Electromagnetic Fields I. Prerequisite: ECE 2723 and MATH 2443 or MATH 2934 and Mathematics 3113. Electrostatic and magnetostatic fields and sources, boundary conditions; introduction to Laplace's and Poisson's equations; quasi-stationary and time-varying fields; Maxwell's equations and circuit concepts. (F, Sp)

†G3723 Electrical Circuits II. Prerequisites: ECE 2713, ECE 2723; and MATH 3113 or concurrent enrollment in MATH 3113. Analysis of electrical circuits in both time and frequency domains. Continuation of AC circuit theory, use of two port network theorems, impulse response, convolution, and differential equations. Laplace and Fourier transform analysis of electrical circuits. (F, Sp)

3773 Electrical and Computer Engineering Circuits Laboratory. Prerequisite: ECE 2214 and either ECE 3723 or concurrent enrollment in ECE 3723. Electrical laboratory procedures, circuit construction, debug and experimental Confirmation of the principles of circuit theory. Introduction to use of laboratory instrumentation, including skills in the use of the oscilloscope in the evaluation of AC and DC circuits. Use and application of digital, operational amplifiers and programmable logic devices. (F, Sp)

†G3793 Signals and Systems. Prerequisites: ECE 2713, ECE 2723, MATH 3113; and MATH 3333 or concurrent enrollment in MATH 3333. Linear systems; time domain analysis; frequency domain analysis; Fourier, Laplace and Z-transforms; introduction to communications and control. (F, Sp)

†G3813 Introductory Electronics. Prerequisite: ECE 2713, and ECE 2723; CHEM 1315; and MATH 2443 or 2934 or concurrent enrollment in MATH 2443 or 2934. Small and large signal characteristics and models of electronic devices; analysis and design of elementary electronic circuits. (F, Sp)

3873 Electromagnetic Field Laboratory. Prerequisite: ECE 2523, ECE 3723, ECE 3773, ECE 3813, and ENGR 2002 or ENGR 2003. Analog electronic circuit design, simulation, construction, debugging and measurement of circuit behavior and noise using advanced instrumentation techniques; statistics-based circuit reliability theory; independent design skills development and technical writing. (F, Sp)

†G4273 Digital Design Laboratory. Prerequisites: ECE 3223 and ECE 3873. Design of digital systems with integrated circuits and MSI/LSI and microprocessor interfacing. Laboratory. (F, Sp)

†G4773 Laboratory (Special Projects). Prerequisite: 4273 or concurrent enrollment in 4273. Individually supervised special engineering problems of experimental nature. Laboratory. (F, Sp)

COURSES IN ENGINEERING (ENGR)
1411 Freshman Engineering Experience. Prerequisite: declared major in Engineering or permission of instructor. Required of all entering freshmen with a declared Engineering major. Lecture hours cover a variety of topics including: majors and minors; career planning; advising; and extra-curricular activities. Students also work on multi-disciplinary engineering projects in smaller groups during the lab hour. (F)

2002 Professional Development. Prerequisite: sophomore standing. Develop an understanding of engineering ethics, teamwork, leadership, and professional responsibility through the concepts of contemporary, social, and global issues. (F, Sp)

COURSES IN MATHEMATICS (MATH)
1914 Differential and Integral Calculus I. Prerequisite: satisfactory score on the math assessment. Duplicates three hours of MATH 1823 and one hour of MATH 2423. Limits and continuity, differentiation, applications of differentiation to optimization and curve sketching, integration, the fundamental theorem of calculus, the substitution rule, applications of integration to computation of areas and volumes. (F, Sp, Su) [I-M]

2924 Differential and Integral Calculus II. Prerequisite: 1914 with a grade of C or better. Duplicates two hours of 2423 and two hours of 2433. The natural logarithmic and exponential functions, indeterminate forms, techniques of integration, improper integrals, parametric curves and polar coordinates, infinite sequences and series, vectors in two and three dimensions. (F, Sp, Su)

2934 Differential and Integral Calculus III. Prerequisite: 2924 with grade of C or better. Duplicates one hour of 2433 and three hours of 2443. Vectors and vector functions, functions of several variables, partial differentiation and gradients, multiple integration, line and surface integrals, Green-Stokes-Gauss theorems. (F, Sp, Su)

†G3113 Introduction to Ordinary Differential Equations. Prerequisite: MATH 2423 or MATH 2924. Duplicates two hours of 3413. First order ordinary differential equations, linear differential equations with constant coefficients, two-by-two linear systems, Laplace transformations, phase planes and stability. (F, Sp, Su)

†G3333 Linear Algebra I. Prerequisite: MATH 2123 or MATH 1823 or MATH 1914 or permission of instructor. Systems of linear equations, determinants, finite dimensional vector spaces, linear transformations and matrices, characteristic values and vectors. (F, Sp, Su)

COURSES IN PHYSICS (PHYS)
2514 General Physics for Engineering and Science Majors. Prerequisite: Mathematics 1823 or Mathematics 1914 with grade of C or better. Not open to students with credit in 1205. Vectors, kinematics and dynamics of particles, work and energy systems of particles, rotational kinematics and dynamics, oscillations, gravitation, fluid mechanics, waves. (F, Sp, Su) [II-NL]

2524 General Physics for Engineering and Science Majors. Prerequisite: PHYS 2514 and MATH 2423 or MATH 2924 with grade of C or better. Not open to students with credit in PHYS 1215. Temperature, heat, thermodynamics, electricity, magnetism, optics. (F, Sp, Su)

†G3232 Modern Physics for Engineers. Prerequisite: Mathematics 3113 or equivalent. Relativity, atomic structure, nuclear theory, wave mechanics, statistical physics, solid state physics. (F)