OU encourages students to complete at least 31 hours of applicable coursework each year to have the opportunity to graduate in four years.

### Year	FIRST SEMESTER	Hours	SECOND SEMESTER	Hours
FRESHMAN
ENGL 1113, Prin. of English Composition (Core I) | 3 | ENGL 1213, Prin. of English Composition (Core I), or MATH 1914, Differential and Integral Calculus I (Core I) | 3
CHEM 1315, General Chemistry (Core II) | 5 | EXPO 1213, Expository Writing (Core I) | 4
MATH 1914, Differential and Integral Calculus I (Core I) | 4 | MATH 2924, Differential and Integral Calculus II (Core I) | 4
PS 1113, American Federal Government (Core III) | 3 | HIST 1483, U.S., 1492-1865, or PHYS 1493, U.S., 1865-Present (Core IV) | 3
ENGR 1411, Freshman Engineering Experience | 1 | ENGR 2514, General Physics for Engineering & Science Majors (Core II) | 4

TOTAL CREDIT HOURS | 16 | **TOTAL CREDIT HOURS** | 14

SOPHOMORE
MATH 2934, Differential and Integral Calculus III | 4 | C S 1323, Introduction to Computer Programming, or C S 1313, Programming for Non-Majors | 3
PHYS 2524, General Physics for Engineering & Science Majors | 4 | C S 2113, Statics | 3
CEES 2113, Statics | 4 | C S 3289, Applied Engineering Statistics | 3
ENGR 2002, Professional Development | 2 | I SE 2303, Design & Manufacturing Processes | 3
ISE 2823, Enterprise Engineering | 3 | I SE 2311, Computer Aided Design & Graphics Lab | 1
MATH Elective | 1 | MATH Elective | 1

TOTAL CREDIT HOURS | 16 | **TOTAL CREDIT HOURS** | 16

JUNIOR
ISE 3304, Design and Manufacturing II | 4 | I SE 4223, Fundamentals of Engineering Economy | 3
ISE 4113, Spreadsheet-Based Decision Support Systems | 3 | I SE 4563, Quality & Reliability Engineering | 3
ISE 4553, Data-Driven Decision Making I | 3 | I SE 4633, Probabilistic Systems Models | 3
ISE 4623, Deterministic Systems Models | 3 | I SE 4804, Ergonomics in Systems Design | 4
†Approved Elective: Social Science (Core III) | 3 | ENGR 2461, Thermodynamics | 1
ISE 4333, Production Systems and Operations | 3 | ENGR 3441, Fluid Mechanics | 1
ISE 4383, Systems Evaluation | 3 | I SE Elective | 3
ISE 4663, Systems Analysis Using Simulation | 3 | †ISE Elective | 3
ISE 4853, Data-Driven Decision Making II | 3 | †ISE Technical Elective | 3

TOTAL CREDIT HOURS | 16 | **TOTAL CREDIT HOURS** | 15

SENIOR
ISE 4393, Capstone Design Project (Capstone) | 3 | †Approved Elective: Non-Western Culture (Core IV) | 3
ISE 4393, Capstone Design Project (Capstone) | 3 | †Approved Elective: Western Civ. & Culture (Core IV) | 3
†Approved Elective: Artistic Forms (Core IV) | 3

TOTAL CREDIT HOURS | 16 | **TOTAL CREDIT HOURS** | 15

NOTE: Engineering transfer students may take ENGR 3511 in place of ENGR 1411.

Courses designated as Core I, II, III, IV, or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list.

†To be chosen from the University-Wide General Education Approved Course List. Three of these 12 hours must be upper-division (3000-4000). See list in the Class Schedule.

In the College of Engineering, in order to progress in your curriculum, and as a specific graduation requirement, a grade of C or better is required in each course in the curriculum. Please refer to the General Catalog for additional enrollment limitations.

Students must successfully complete prerequisite courses (with a minimum C grade) before proceeding to the next course.

- Two college-level courses in a single foreign language are required; this may be satisfied by successful completion of 2 years in a single foreign language in high school. Students who must take foreign language at the University will have an additional 6-10 hours of coursework.

†To be chosen from the approved list of math electives consisting of MATH 2513, 3113, 3333, 3413, 3513, 3613, 4433, or C S 1813.

†To be chosen from an approved list of ISE electives available in the ISE office, CEC 116.

†To be chosen from an approved list of ISE technical electives available in the ISE office, CEC 116.

MATH 1823, 2423, 2433, and 2443 sequence can be substituted for MATH 1914, 2924, and 2934.
COURSES IN CHEMISTRY AND BIOCHEMISTRY (CHEM)
1315 General Chemistry. Prerequisite: Mathematics 1503 or 1634, or Math ACT equal to or greater than 23. First of a two-semester sequence in general chemistry. Topics covered: basic measurement, gas laws and changes in state, stoichiometry, atomic theory, electron configuration, periodicity, bonding, molecular structure and thermochromy. Laboratory (F, Sp, Su) [II-LAB]

COURSES IN CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE (CEES)
2113 Statics. Prerequisites: Physics 2514 and Mathematics 2433 or 2934 or concurrent enrollment in Mathematics 2433 or 2934. Vector representation of forces and moments; general three-dimensional theory of statics; centroids and moments of area and inertia. Free-body diagrams, equilibrium of a particle and of rigid bodies, distributed loads, friction and internal shear and moment loads. Analysis of trusses, frames, and machines. (F)

2153 Mechanics of Materials. Prerequisites: 2113 or Aerospace and Mechanical Engineering 2113 or Petroleum Engineering 2113. Basic principles of mechanics, including the definition of stress and strain, transformations and principal values for the stress and strain tensors, kinematic relations, review of conservation equations and the development and application of constitutive laws for idealized materials. Applications of finite element techniques to linear elastic solids. Principal stress relations for a linear-elastic continuum, including elastic parameters such as Young's modulus, shear and bulk moduli and Poisson's ratio. Solution of elementary one- and two-dimensional mechanics problems, including thermal stresses and strains, beam flexure, shear and deflections, pressure vessels and buckling of columns. (Sp)

COURSES IN COMPUTER SCIENCE (CS)
1313 Programming for Nonmajors. Prerequisite: Mathematics 1523 or concurrent enrollment. Introduction to the design and implementation of computer programs. Emphasis on problem solving. (F, Sp)
1323 Introduction to Computer Programming. Prerequisite: MATH 1523 or concurrent enrollment, or placement into MATH 1743 or MATH 1823 or higher. Introduction to the design and implementation of computer software with an emphasis on abstraction and program organization. (F, Sp)

COURSES IN ENGINEERING (ENGR)
1411 Freshman Engineering Experience. Prerequisite: declared major in engineering or permission of instructor. Required of all entering freshmen with a declared engineering major. Lecture hours cover a variety of topics including: majors and minors; career planning; advising; and extra-curricular activities. Students also work on multi-disciplinary engineering projects in smaller groups during the lab hour. (F, Sp)
2002 Professional Development. Prerequisite: sophomore standing. Develop an understanding of engineering ethics, teamwork, leadership, and professional responsibility through the concepts of contemporary, social, and global issues. (F, Sp)
2431 Electrical Circuits. Prerequisites: Mathematics 2423 or 2924; and Physics 2524 or concurrent enrollment. Introduction to the advanced analysis of electric circuits. Topics include: vectors analysis, DC transients, static electrical fields, static magnetic fields, capacitors, inductors, and filters. (F, Sp)
2461 Thermodynamics. Prerequisites: Mathematics 2433 or 2934; and Physics 2524 or concurrent enrollment. Introduction to basic principles of thermodynamics. Topics include density, pressure, and temperature, the first law of thermodynamics for a system, the first law of thermodynamics for a control volume, the second law of thermodynamics, and psychrometrics. (F)
3441 Fluid Mechanics. Prerequisite: Mathematics 2433 or 2934. Introduction to basic principles of fluid mechanics. Topics include fluid properties, fluid statics, dimensionless parameters and similarity, control volume equations, open channel flow, and external flow. (F)

COURSES IN INDUSTRIAL AND SYSTEMS ENGINEERING (ISE)
2303 Design and Manufacturing Process (Crosslisted with Aerospace and Mechanical Engineering 2303). Prerequisite: Aerospace and Mechanical Engineering 2113 or Civil Engineering and Environmental Science 2113 or Engineering Science 2113. Mechanical and physical properties of engineering materials. Introduction to design concepts, manufacturing processes and equipment used in engineering. (Sp)
2311 Computer Aided Design and Graphics Laboratory for Industrial Engineers. Corequisite: 2303. Provides students with a basic understanding of technical graphics communication and computer-aided design for industrial engineering applications. By using computer-aided design/drafting software, SolidWorks/AutoCAD, students will learn basic principles of engineering graphics and geometric modeling to assist in design problem visualization and planning. (Sp)
2823 Enterprise Engineering. Prerequisite: sophomore standing. Introduction to the industrial engineering role as enterprise system integrator. Systems concepts, modeling and analysis; integrated product/service and operational process design; productivity and quality improvement; computer technology insertion; project, operations, and global supply chain management. (F)
+G3293 Applied Engineering Statistics. Prerequisite: Mathematics 2433 or MATH 2924. Introduction to probability, one and higher dimensional random variables, function of random variables, expectation, random continuous distributions, sampling and descriptive statistics, parameter estimation, use of statistical packages. Not available for graduate credit for students in engineering disciplines. (F, Sp, Su)
+G3504 Design and Manufacturing II. Prerequisite: 2303, 2311, Civil Engineering and Environmental Science 2153 (or concurrent enrollment), or Aerospace and Mechanical Engineering 3143 (or concurrent enrollment). Dimensioning and tolerancing; tolerances—type, design and specification; assembly and fit design; tolerance standards; process planning—preference designation in machining, operation and machine sequencing; gage and fixtures—design and analysis; time and cost estimation for machining; automation; processes/system integration. Laboratory (F, Sp, Su)

4113 Spreadsheet-Based Decision Support Systems. Prerequisite: I/E/ISE 4623 or concurrent enrollment in I/E/ISE 4623, Computer Science 3135 or CS 1322, or permission of instructor. Covers all aspects of spreadsheet-based software functionality that are relevant to supporting decision-making. Microsoft Excel is used as the subject tool. Students will learn advanced functions of Excel that are available through the spreadsheet interface, the Visual Basic language and its integration with the spreadsheet, and principles of decision-support systems studied in a variety of applications, including facility layout, warehousing, portfolio optimization, and various statistical inference problems. (F)

G422 Fundamentals of Engineering Economy. Prerequisite: MATH 2423 or 2924. Development and application of principles of decision-making in a variety of contexts. Emphasis on the role of analysis, methods and economics. Applications of models and methods to resource management, capital budgeting, and project and portfolio evaluation and planning, including the time value of money, assessment of capital investments, design alternatives, and portfolio optimization under various restrictions. (F)

4553 Data-Driven Decision Making I (Slashed with 5553). Prerequisite: I/E/ISE 2923. Fundamentals of statistical models for describing engineering systems and processes. Analysis of various types and modeling of multiple regression, logistical regression, clustering. Emphasis is placed on decision making. No student may earn credit for both 4553 and 5553. (F)
5453 Quality and Reliability Engineering (Slashed with 5553). Prerequisite: I/E/ISE 3293, and I/E/ISE 5553 or I/E/ISE 4553. The use of statistical methods for quality control and improvement in product and process environments, as well as introductory applied probability for component and system reliability. Topics include: reliability and risk, control chart theory and application, process capability, and performance metrics of reliability. Focus is given to decision making in engineering systems. No student may earn credit for both 4553 and 5553. (Sp)

4623 Deterministic Systems Models. Prerequisite: I/E/ISE 2823. Problem solving using analytical models, computer software, methodology, and application. Topics include linear programming, simplex algorithm and sensitivity analysis, integer programming, and dynamic programming. Practical applications in transportation networks, project management and scheduling, deterministic inventory models, decision making, and systems integration. Solution methods using computer software. (F)

4623B Probabilistic Systems Models. Prerequisite: I/E/ISE 2823. IE/ISE 3293 or IE/ISE 3924 or I/E/ISE 4623 or I/E/ISE 4623B. Problem solving using stochastic models: theory, methodology, and application. Topics include probability distributions, Poisson processes, Markov chains and Markov decision processes, queuing theory, and Monte Carlo simulation. Practical applications in probabilistic inventory models, maintenance activities, decision making, and systems integration. Solution methods using computer software. (Sp)

4663 Systems Analysis Using Simulation. Prerequisite: Engineering 3293 or 3295, 4633. Implements the science of systems analysis through the use of simulation modeling and statistical analysis; inclusion of time study analysis for performing input modeling tasks. Laboratory (F)

4804 Ergonomics in Systems Design. Prerequisite: junior standing or permission of instructor. Human-systems integration, considering the impacts of the physical structure, the information flow, and the environmental conditions on human performance. Students learn how to design, evaluate and improve systems from the perspective of the human(s) working in and impacted by the system. Laboratory (Sp)

4853 Applied Research Methods (Slashed with 5853). Prerequisite: 4553 and 4804. Experimental methodology for empirical investigation, including problem formulation. The development and measurement of performance criteria, experimental and oral communication. The measurement of human performance is a typical vehicle used for students in this course. No student may earn credit for both 4853 and 5853. (F)

COURSES IN MATHEMATICS (MATH)
1914 Differential and Integral Calculus I. Prerequisite: satisfactory score on the placement test or, for incoming freshmen direct from high school, satisfactory score on the ACT/SAT. Duplicate three hours of 1823 and one hour of 2423. Limits and continuity, differentiation, applications of differentiation to optimization and curve sketching, introduction to the fundamental theorem of calculus, the substitution rule, applications of integration to computation of areas. (F, Sp, Su) [I-M]
2924 Differential and Integral Calculus II. Prerequisite: 1914 with a grade of C or better. Duplicate two hours of 2423 and two hours of 2433. Further applications of integration, the natural logarithmic and exponential functions, indeterminate forms, techniques of integration, improper integrals, parametric curves and polar coordinates, infinite series and sequences. (F, Sp, Su)
3934 Differential and Integral Calculus III. Prerequisite: 2924 with a grade of C or better. Duplicate one hour of 2423 and three hours of 2443. Vectors and vector functions, functions of several variables, partial differentiation and gradients, multiple integration, line and surface integrals, Green's, Stokes, and Gauss theorems. Laboratory (F, Sp, Su)

COURSES IN PHYSICS (PHYS)
2514 General Physics for Engineering and Science Majors. Prerequisite: Mathematics 1823 or Mathematics 1414 with grade of C or better. Not open to students with credit in 2125. Vectors, kinematics and dynamics of particles, work and energy systems of particles, rotational kinematics and dynamics, oscillations, gravity, fluid mechanics, waves. (F, Sp, Su) [II-NL]
2514B General Physics for Engineering and Science Majors. Prerequisite: 2514 and Mathematics 2423 or 2924 with a grade of C or better. Not open to students with credit in 2125. Temperature, heat, thermodynamics, electricity, magnetism, optics. (F, Sp, Su)