REQUIREMENTS FOR THE BACHELOR OF SCIENCE IN ENVIRONMENTAL SCIENCE/
MASTER OF ENVIRONMENTAL SCIENCE

COLLEGE OF ENGINEERING

THE UNIVERSITY OF OKLAHOMA

For Students Entering the Oklahoma State System for Higher Education

Summer 2014 through Spring 2015

GENERAL REQUIREMENTS

- **Total Credit Hours**: 149-151
- **Minimum Retention/Graduation Grade Point Averages**:
 - Overall - Combined and OU: 3.00
 - Major - Combined and OU: 3.00
 - Curriculum - Combined and OU: 3.00
- A minimum grade of C is required for each course in the curriculum.

OU encourages students to complete at least 29-31 hours of applicable coursework each year to have the opportunity to graduate in five years.

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL</td>
<td>1113, Prin. of English Composition (Core I)</td>
<td>3</td>
<td>BIOL</td>
<td>1114, Introductory Zoology, or</td>
</tr>
<tr>
<td>CHEM</td>
<td>1315, General Chemistry (Core II)</td>
<td>5</td>
<td>BIOL</td>
<td>1134, Intro. Biology: Evolution, Ecology & Diversity, or</td>
</tr>
<tr>
<td>MATH</td>
<td>1914, Differential and Integral Calculus I (Core I)</td>
<td>4</td>
<td>PBIO</td>
<td>1140, General Chemistry</td>
</tr>
<tr>
<td>HIST</td>
<td>1483, U.S., 1842-1865, or 1493, U.S., 1865-Present (Core IV)</td>
<td>3</td>
<td>ENGL</td>
<td>1213, Prin. of English Composition (Core I), or</td>
</tr>
<tr>
<td>CEES</td>
<td>1112, Intro. to Civ. Engr. & Environmental Science</td>
<td>2</td>
<td>EXPO</td>
<td>1213, Expository Writing (Core I)</td>
</tr>
<tr>
<td>ENGR</td>
<td>1410, Freshman Engineering Orientation I</td>
<td>0</td>
<td>CHEM</td>
<td>1415, General Chemistry</td>
</tr>
<tr>
<td>MATH</td>
<td>2924, Differential and Integral Calculus II</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>17</td>
<td></td>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

SOPHOMORE					
CHEM	3053, Organic Chemistry I: Biological Emphasis	3	CHEM	3153, Organic Chemistry II: Biological Emphasis	3
CEES	2313, Water Quality Fundamentals	3	PHYS	2524, General Physics for Engineering & Science, or	4
$CEES	1000, CEES Seminar	0	CEES	2323, Environmental Transport & Fate Process	0
CEES	1213, Computing Applications in CEES	3	$CEES	1000, CEES Seminar	3
Approved Elective: Artistic Forms (Core IV)	3				
TOTAL CREDIT HOURS	16		**TOTAL CREDIT HOURS**	15	

+ Admission to the accelerated program is by application and requires a minimum GPA of 3.20.

NOTE: Engineering transfer students may take ENGR 3410 in place of ENGR 1410 and ENGR 1420.

Courses designated as Core I, II, III, IV, or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list.

- To be chosen from the University-Wide General Education Approved Course List.
 - Three of these 12 hours must be upper-division (3000-4000). See list in the Class Schedule.

In the College of Engineering, in order to progress in your curriculum, and as a specific graduation requirement, a grade of C or better is required in each course in the curriculum. Please refer to the General Catalog for additional enrollment limitations.

Students must successfully complete prerequisite courses (with a minimum C grade) before proceeding to the next course.

- Two college-level courses in a single foreign language are required; this may be satisfied by successful completion of 2 years in a single foreign language in high school. Students who must take foreign language at the University will have an additional 6-10 hours of coursework.

- The Environmental Science electives will be selected from CEES courses with the approval of the advisor.

- Students must choose a specialization in either Environmental Science or Environmental Management.

Students must complete a minimum of four semesters of CEES 1000.

- Professional electives can be chosen from any 3000-level or higher course in CEES. One three-hour professional elective can be taken outside CEES with advisor approval.

- See Student Handbook for the list of Track electives.

MATH 1823, 2423, 2433, and 2443 sequence can be substituted for MATH 1914, 2924, and 2934.

TOTAL CREDIT HOURS:

- **FRESHMAN**: 14-15
- **SOPHOMORE**: 15
- **JUNIOR**: 14
- **SENIOR**: 15
- **FIFTH YEAR**: 12-13

3-11
Environmental Science, Accelerated BS/MS—A405/F405—Page 2

COURSES IN ANTHROPOLOGY
4623 Approaches to Cross-Cultural Human Problems. Prerequisite: 1113 or junior standing. Introduces students to the complex problems of contemporary global-scale cultures and helps them better understand their place on this global arena. This course will look at specific international issues or problems, and relate them to processes occurring in many parts of the world. (Irreg.) [IV-NW]

COURSES IN BIOLOGY (BIOL)
1114 Introductory Zoology. Major biological principles and concepts as illustrated in the structure, function and evolution of animals. Emphasis is on self-regulatory mechanisms, especially in the vertebrates, and their adaptive significance. (F, Sp, Su) [II-NL]
1134 Introductory Biology: Evolution, Ecology and Diversity. Prerequisite: Life science majors only. Major biological principles and concepts as illustrated in a survey of the diversity, processes. No student may earn credit for both 4324 and 5324.
3053 Organic Chemistry I: Biological Emphasis.
1415 General Chemistry (Continued).
2323 Environmental Transport and Fate Processes.
2313 Water Quality Fundamentals.
4114 and 5114 or Environmental Science 4114 and 5114.
1315 General Chemistry.
†G3403 Principles of Ecology. Prerequisite: 1114 and 1121, or 1134, or Plant Biology 1114. Patterns of environments and biological communities; the processes maintaining these patterns. Laboratory (F, Sp)

COURSES IN CHEMISTRY AND BIOCHEMISTRY (CHEM)
1315 General Chemistry. Prerequisite: Mathematics 1503 or 1643, or math ACT equal to or greater than 23. First of a two-semester sequence in general chemistry. Topics covered: basic measurement, gas laws and changes in state, stoichiometry, atomic theory, electron configuration, periodicity, bonding, molecular structure and thermochimistry. Laboratory (F, Sp, Su) [II-LB] [II-LAB] [II-NL]
1415 General Chemistry (Continued). Prerequisite: 1315 with a minimum grade of C or a satisfactory score on the chemistry placement examination. Topics covered include: nature of solutions, equilibrium, thermodynamics, acid and base properties, kinetics and electrochemistry. Laboratory (F, Sp, Su) [II-LB] [II-LAB] [II-NL]
3053 Organic Chemistry I: Biological Emphasis. Prerequisite: CHEM 1415 or CHEM 1425. This course will cover the concepts of organic structure, nomenclature, and reactivity with an emphasis on biological applications. (F, Sp, Su)
3153 Organic Chemistry II: Biological Emphasis. Prerequisite: CHEM 3053 with a grade of C or better. Intended for life science majors. Second course in a two-semester sequence (3053 and 3153). This course will cover the concepts of organic chemical reactivity with an emphasis on carbohydrates, lipids, and proteins. (F, Sp, Su)

COURSES IN CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE (CEES)
1000 CEES Seminar. Seminar provides a common meeting time for students and faculty for department activities, such as invited speakers, project presentations, educational surveys, cross-course project coordination, and policy announcements. Students must enroll every semester that they are matriculated in CEES at OU after the freshman year, but in no case can a student graduate without successfully completing four seminars. (F, Sp)
1112 Introduction to Civil Engineering and Environmental Science. Prerequisite: Freshman only. Introduction to analytical concepts (mass/flow balance), problem solving and design, and simple computing software for architectural, civil or environmental engineers and environmental scientists. (F)
1213 Computing Applications in Civil Engineering and Environmental Science. Prerequisite: Mathematics 2423 or 2924, Physics 2514 or 2414 or concurrent enrollment. Introduction to application software and computing tools relevant to engineering, environmental engineering, architectural engineering and environmental science, including programming, spreadsheets and computer-aided design. (F)
2313 Water Quality Fundamentals. Prerequisite: Chemistry 1415, Mathematics 2423 or 2924. Introduction to the physicochemical and hydrologic processes controlling contaminant transport; sources, treatment and remediation of environmental pollutants. (Sp)
4114 Aquatic Chemistry (Slashed with 5114). Prerequisite: Senior standing and one year of general chemistry. Environmental kinetics and thermodynamics in aquatic systems; acid-base, precipitation/solubility, metal complexation and oxidation/reduction reactions; environmental colloidal and solid-liquid interface chemistry. No student may earn credit for both 4114 and 5114. Laboratory (F)
4253 Statistics and Probability. Prerequisite: MATH 2423, or 2924, and PHYS 2524. Designed to help students understand the fundamentals of probability, statistics, reliability, and risk methods in support of decision making for future engineers and scientists. Fundamental concepts in probability and statistics will be reviewed and used throughout the course. Engineering design decisions are often based on data that contain uncertainty; future scientists and engineers should understand how uncertainty affects calculated quantities, accuracy, precision, and reliability. (Sp)

COURSES IN ENVIRONMENTAL SCIENCE (ENVSC)
4813 Environmental Science and Environmental Engineering Professional Practice. Prerequisite: senior standing in environmental science or environmental engineering. Nature of profession, duties and administrative responsibilities. Organization and management of operating divisions with emphasis on role of environmental professional. Functional approach to planning and implementing public works needs with emphasis on role of environmental professional. (F, Sp)
4913 Environmental Science Capstone (Slashed with 5114). Prerequisite: Senior standing, or permission of instructor. Examination of important environmental science issues and environmental science as a discipline. (F, Sp, Su)
4943 Air Quality Management. Prerequisite: MATHE 2423 or 2924; and CHEM 1315. Important aspects of air quality will be covered, including atmospheric pollution legislation, major sources and effects of air pollutants, monitoring, atmospheric dispersion, and air quality modeling. (F)
G5020 Special Topics in Civil Engineering. 1 to 6 hours. Prerequisite: senior or graduate standing and permission of instructor. May be repeated with change of topic, maximum credit 12 hours. Examines subjects matter in civil engineering not covered by existing course offerings as a regular course. (F, Sp, Su)
G5021 Technical Communications. Prerequisite: CEEES 2423 or 2524. Examines students’ ability to perform and communicate orally and in written form. Examines writing as a way of thinking. (F, Sp)
G5980 Research for Master’s Thesis. Variable enrollment, two to nine hours; maximum credit applicable toward degree, four hours. (F, Sp, Su)

COURSES IN ENGINEERING (ENGR)
1410 Freshman Engineering Orientation I. Prerequisite: declared major in engineering. All entering freshmen with a declared engineering major are required to enroll. One hour of this seminar a week is in a large group setting where all students meet and cover details on all engineering disciplines. Additional topics would be continuums of majors, success in the College of Engineering, success at the University of Oklahoma, study abroad programs, advising issues, graduate school opportunities, career planning, and information related to technical/honor societies and student clubs. A second hour a week will be a required small group session with an upper-class mentor from the College of Engineering Dean’s Leadership Council. This second hour will focus on basic enrollment and retention strategies such as adding and dropping classes and choosing electives in addition to a weekly topic area. (F)

COURSES IN ENGLISH (ENGL)
3153 Technical Writing. Prerequisite: 1213 and Engineering or hard science majors only. For students of the pure and applied sciences. Focuses on the forms of report writing most frequently encountered in research and industry. (F, Sp, Su)

COURSES IN GEOGRAPHY (GEOG)
4293 Hydrologic Science (Slashed with 5293). Prerequisite: Math 1823 or 1914, and either Physics 2514 or 2513 or Chemistry 1311 or 1314 or Concurrent enrollment. Examines the hydrologic cycle and related processes which control the storage and movement of water at global, regional, and local scales. The emphasis is on the land portion of the hydrologic cycle, and includes the study of processes such as infiltration, soil water flow in the saturated and unsaturated zone, rainfall/runoff and evaporation. Lab sections include exercises on a computer in the field and in a soils lab. No student may earn credit for both 4293 and 5293. (Sp)

COURSES IN HISTORY OF SCIENCE (HSCI)
3333 Technology and Society in World History. Prerequisite: junior standing, or completion of one History of Science lower-division course, or permission of instructor. A survey of the history of technology emphasizing the importance of technological details, as it explores the key steps in the construction of our modern technological world. Materials include literature and film as well as non-fiction. (Sp) [IV-WC]

COURSES IN MATHEMATICS (MATH)
1914 Differential and Integral Calculus I. Prerequisite: satisfactory score on the placement test or, for incoming freshmen direct from high school, satisfactory score on the ACT/SAT. Duplicates three hours of 1823 and one hour of 2423. Limits and continuity, differentiation, applications of differentiation to optimization and curve sketching, integration, the fundamental theorem of calculus, the substitution rule, applications of integration to computation of areas. (F, Sp, Su) [I-M]
2924 Differential and Integral Calculus II. Prerequisite: 1914 with a grade of C or better. Duplicates two hours of 2423 and two hours of 2433. Further applications of integration, the natural logarithmic and exponential functions, indeterminate forms, techniques of integration, improper integrals, parametric curves and polar coordinates, infinite sequences and series. (F, Sp, Su)

COURSES IN MICROBIOLOGY (MBIO)
2815 Introduction to Microbiology. Prerequisite: one course in college chemistry. Introduction to microorganisms as biological entities. Survey of the roles of microorganisms in the ecosystem. Application of microorganisms to industrial and environmental problems. Discussion of microorganisms as causes of human disease and response of hosts to microbial invasion. This course does not count for major credit in Microbiology or Botany. Laboratory (F, Sp, Su) [III-LAB]

COURSES IN PHYSICS (PHYS)
2514 General Physics for Engineering and Science Majors. Prerequisite: Mathematics 1823 or Mathematics 1914 with grade of C or better. Not open to students with credit in 1205. Vectors, kinematics, dynamics and dynamics of particles and systems of particles, harmonic oscillations, electric and magnetic fields, waves. (F, Sp, Su) [II-NL]
2524 General Physics for Engineering and Science Majors. Prerequisite: 2514 and Mathematics 2423 or 2924 with a grade of C or better. Not open to students with credit in 1205. Temperature, heat, thermodynamics, electricity, magnetism, optics. (F, Sp, Su)

COURSES IN PLANT BIOLOGY (PBIO)
1114 General Botany. Previous course in chemistry (high school or college) recommended. Fullfillls Arts and Sciences’ biological science requirement. Basic processes and structures in plants; their relation to factors in the environment; reproduction; heredity, heritable and nonheritable variations in plants and their causes and consequences are studied. Scientific procedures are acquired through application and discussion. Laboratory (F, Sp, Su) [III-LAB]