GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
<th>Minimum Retention/Graduation Grade Point Averages:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall - Combined and OU</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
</tr>
</tbody>
</table>

A minimum grade of C is required for each course in the curriculum.

Total Credit Hours: 143-146*

*Electives to be selected from the approved list.

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN</td>
<td>ENGL 1113, Prin. of English Composition (Core I)</td>
<td>3</td>
<td>ENGL 1213, Prin. of English Composition (Core I), or EXPO 1213, Expository Writing (Core I)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1315, General Chemistry (Core II)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 1483, U.S., 1492-1865, or HIST 1493, U.S., 1865-Present (Core IV)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*MATH 1914, Differential and Integral Calculus I (Core I)</td>
<td>4</td>
<td>*MATH 2924, Differential and Integral Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGR 1411, Freshman Engineering Experience</td>
<td>1</td>
<td>PHYS 2514, General Physics for Engineering & Science Majors (Core II)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C S 3131, Programming for Non-Majors</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
<td>TOTAL CREDIT HOURS</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SOPHOMORE</td>
<td>*MATH 2934, Differential and Integral Calculus III</td>
<td>4</td>
<td>MATH 3113, Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 2524, General Physics for Engineering & Science Majors</td>
<td>4</td>
<td>ECE 2713, Digital Signals and Filtering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 2214, Intro. to Digital Design</td>
<td>4</td>
<td>ECE 2723, Electrical Circuits I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Approved Elective, Core III: Social Science</td>
<td>3</td>
<td>Approved Elective, Core IV: Artistic Forms</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>17</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Engineering/ Electrical & Computer Engineering — Bachelor of Science in Electrical Engineering/Master of Science (Elec. & Comp. Engr.)

For Students entering the Oklahoma State System for Higher Education Summer 2013 through Spring 2014

Courses designated as Core I, II, III, IV, or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list.

1. To be chosen from the University-Wide General Education Approved Course List. Three of these 12 hours must be upper-division (3000-4000). See list in the Class Schedule.

In the College of Engineering, in order to progress in your curriculum, and as a specific graduation requirement, a grade of C or better is required in each course in the curriculum. Any course for which a grade of C or better is not earned must be repeated the next semester enrolled in which it is offered, if a student plans to use the course in their curriculum. Please refer to the General Catalog for additional enrollment limitations.

Students must successfully complete prerequisite courses (with a minimum C grade) before proceeding to the next course.

- Two college-level courses in a single foreign language are required; this may be satisfied by successful completion of 2 years in a single foreign language in high school. Students who must take foreign language at the University will have an additional 6-10 hours of coursework.

- Electives to be selected from list available in the ECE Office, DEH-150. Technical electives must satisfy Depth Requirement.

- Fourth and fifth year electives (G4000 or higher, including technical electives for MS) must satisfy MSEE Approved Requirements.

- Thesis option requires nine hours; non-thesis requires 12 hours.

- MATH 1823, 2423, 2433, and 2443 sequence can be substituted for MATH 1914, 2924, and 2934.
COURSES IN CHEMISTRY AND BIOCHEMISTRY (CHEM)
1315 General Chemistry. Prerequisite: Mathematics 1503 or 1641, or math ACT equal to or greater than 23. First of a two-semester sequence in general chemistry. Topics covered: basic measurement, measurement techniques, stoichiometry, atomic theory, electron configuration, periodicity, bonding, molecular structure and thermochemistry. Laboratory (F, Sp, Su) [II-LAB]

COURSES IN COMPUTER SCIENCE (CS)
1313 Programming for Nonmajors. Prerequisite: MATH 1523 or concurrent enrollment. Introduction to the design and implementation of computer programs. Emphasis on problem solving. (F, Sp)

COURSES IN ELECTRICAL AND COMPUTER ENGINEERING (ECE)
2214 Digital Design. Prerequisite: MATH 1823 or MATH 1914. Number systems, Boolean algebra, minimization procedures, combinational logic functions, introduction to sequential logic design, finite state machines and clocked (synchronous) sequential circuits. Analysis, synthesis and implementation are appropriately emphasized. (F, Sp)

2713 Digital Signals and Filtering. Prerequisites: ENGR 1411 or ENGR 3511 or concurrent enrollment; CS 1313 or CS 1323 or concurrent enrollment; and MATH 2423 or 2924. Digital signals and filters, discrete Fourier A and Z transforms, sampling, (F, Sp)

2723 Electrical Circuits I. Prerequisite: ECE 2713 or concurrent enrollment in ECE 2713; Mathematics 2423 or 2924; Physics 2524. Introduction to circuit elements and the laws of electrical science. Loop and nodal analysis solution methods. Thévenin and Norton equivalent circuits. Superposition and source transformation methods. Guest lectures introducing advanced topics. (F, Sp)

G3113 Energy Conversion I. Prerequisite: ECE 2723 and ECE 3613. Survey of methods of energy conversion; field-energy force relationships, equations of motion, incremental motion transducers, transformer theory; introduction to rotating machines. (Sp)

3223 Microprocessor System Design. Prerequisite: 2214. Review of clocked sequential circuits; MSI/LSI devices and applications, including registers, busing, combinational functions, use of microprocessors and logic design using microprocessors. Emphasizes assembly of full functional units into workable systems. (F, Sp)

G3323 Introduction to Solid State Electronic Devices. Prerequisite: 3613. Introduction to quantum mechanics, crystal properties and growth of semiconductors, energy bands in solids, charge carriers in semi-conductors, excess carriers in semiconductors, and introduction to diodes and transistors. (F, Sp)

3613 Electromagnetic Fields I. Prerequisite: ECE 2723 and MATH 2443 or MATH 2934 and Mathematics 3113. Electrostatic and magnetostatic fields and sources, boundary conditions; introduction to Laplace’s and Poisson’s equations; quasi-stationary and time-dependent fields; Maxwell’s equations and circuit concepts. (F, Sp)

G3273 Electrical Circuits II. Prerequisite: ECE 2713, ECE 2723; and, MATH 3113 or concurrent enrollment in MATH 3113. Analysis of electrical circuits in both time and frequency domains. Continuation of AC circuit theory, use of two port network theorems, impulse response, convolution, and differential equations. Laplace and Fourier transform analysis of electrical circuits. (F, Sp)

3773 Electrical and Computer Engineering Circuits Laboratory. Prerequisite: ECE 2214 and either ECE 3723 or concurrent enrollment in ECE 3723. Electrical laboratory procedures, circuit construction, debug and experimental Confirmation of the principles of circuit theory. Introduction to use of laboratory instrumentation, including skills in the use of the oscilloscope in the evaluation of DC and AC circuits. Use and application of diodes, operational amplifiers and programmable logic devices. (F, Sp)

G3793 Signals and Systems. Prerequisites: ECE 2713, ECE 2723, MATH 3113; and MATH 3333 or concurrent enrollment in MATH 3333. Linear systems: time domain analysis; frequency domain analysis; Fourier, Laplace and Z-transforms; introduction to communications and control. (F, Sp)

G3813 Introductory Electronics. Prerequisites: ECE 2713, ECE 2723; CHEM 1315; and MATH 2443 or 2924 or concurrent enrollment in MATH 2443 or 2924. Small and large signal characteristics and models of electronic devices; analysis and design of elementary electronic circuits. (F, Sp)

3873 Electrical and Computer Engineering Electronics Laboratory. Prerequisite: 3773, 3813, and Engineering 2002 or 2003. Electronic analog circuit design, simulation, construction, debugging and measurement of circuit performance quantities using advanced instrumentation techniques; circuit reliability theory; independent design skills development and technical writing. (F, Sp)

G4273 Digital Design Laboratory. Prerequisites: ECE 3223 and ECE 3873. Design of digital systems with integrated circuits and MSI/LSI and microprocessor interfacing. Laboratory (F, Sp)

G4773 Laboratory (Special Projects). Prerequisite: 4273 or concurrent enrollment in 4273. Individually supervised special engineering problems of experimental nature. Laboratory (F, Sp) [V]

COURSES IN INDUSTRIAL AND SYSTEMS ENGINEERING (ISE)
G4293 Applied Engineering Statistics. Prerequisite: MATH 2433 or 2924. Introduction to probability, one and higher dimensional random variables, function of random variables, expectation, discrete and continuous distributions, sampling and descriptive statistics, parameter estimation, use of statistical packages. Not available for graduate credit for students in engineering disciplines. (F, Sp, Su)

COURSES IN MATHEMATICS (MATH)
1914 Differential and Integral Calculus I. Prerequisite: satisfactory score on the placement test or, for incoming freshmen direct from high school, satisfactory score on the ACT/SAT. Duplicates three hours of 1823 and one hour of 2423. Limits and continuity, differentiation, applications of differentiation to optimization and curve sketching, integration, the fundamental theorem of calculus, the substitution rule, applications of integration to computation of areas. (F, Sp, Su) [II-M]

2924 Differential and Integral Calculus II. Prerequisite: 1914 with a grade of C or better. Duplicates two hours of 2423 and two hours of 2433. Further applications of integration, the natural logarithmic and exponential functions, indeterminate forms, techniques of integration, improper integrals, parametric curves and polar coordinates, infinite sequences and series. (F, Sp, Su)

2934 Differential and Integral Calculus III. Prerequisite: 2924 with a grade of C or better. Duplicates one hour of 2433 and three hours of 2443. Vectors and vector functions, functions of several variables, partial differentiation and gradients, multiple integration, line and surface integrals, Green-Stokes-Gauss theorems. (F, Sp, Su)

G3113 Introduction to Ordinary Differential Equations. Prerequisite: MATH 2423 or MATH 2924. Duplicates two hours of 3413. First order ordinary differential equations, linear differential equations with constant coefficients, two-by-two linear systems, Laplace transformations, phase planes and stability. (F, Sp, Su)

G3333 Linear Algebra I. Prerequisite: MATH 2433 or MATH 2934 or permission of instructor. Systems of linear equations, determinants, finite dimensional vector spaces, linear transformations and matrices, characteristic values and vectors. (F, Sp, Su)

COURSES IN PHYSICS (PHYS)
2514 General Physics for Engineering and Science Majors. Prerequisite: Mathematics 1823 or Mathematics 1914 with grade of C or better. Not open to students with credit in 1205. Vectors, kinematics and dynamics of particles, work and energy systems of particles, rotational kinematics and dynamics, oscillations, gravitational, fluid mechanics, waves. (F, Sp, Su) [II-NL]

2524 General Physics for Engineering and Science Majors. Prerequisites: 2514 and Mathematics 2423 or MATH 2924 with a grade of C or better. Not open to students with credit in 1215. Temperature, heat, thermodynamics, electricity, magnetism, optics. (F, Sp, Su)

G4223 Modern Physics for Engineers. Prerequisite: Mathematics 3113 or equivalent. Relativity, atomic structure, nuclear theory, wave mechanics, statistical physics, solid state physics. (F)

COURSES IN ENGINEERING (ENGR)
1411 Freshman Engineering Experience. Prerequisite: declared major in Engineering or permission of instructor. Required of all entering freshmen with a declared Engineering major. Lecture hours cover a variety of topics including: majors and minors; career planning; advising; and extra-curricular activities. Students also work on multi-disciplinary engineering projects in smaller groups during the lab hour. (F)

2002 Professional Development. Prerequisite: sophomore standing. Develop an understanding of engineering ethics, teamwork, leadership, and professional responsibility through the concepts of contemporary, social, and global issues. (F, Sp)