Requirements for the Bachelor of Science in Chemical Engineering

Accredited by ABET, Inc., (formerly the Accrediting Board for Engineering and Technology)

College of Engineering

The University of Oklahoma

General Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1113, Prin. of English Composition (Core I)</td>
<td>3</td>
<td>ENGL 1213, Prin. of English Composition (Core I), or</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1315, General Chemistry (Core II)</td>
<td>5</td>
<td>EXPO 1213, Expository Writing (Core I)</td>
<td>5</td>
</tr>
<tr>
<td>MATH 1823, Calculus & Analytic Geometry I (Core I)</td>
<td>3</td>
<td>CHEM 1415, General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>HIST 1483, U.S., 1492-1865, or</td>
<td>3</td>
<td>MATH 2423, Calculus & Analytic Geometry II</td>
<td>3</td>
</tr>
<tr>
<td>1493, U.S., 1865-Present (Core IV)</td>
<td></td>
<td>PHYS 2514, General Physics for Engineering & Science</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 1411, Freshman Engineering Experience</td>
<td>1</td>
<td>Majors (Core II)</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2433, Calculus & Analytic Geometry III</td>
<td>3</td>
<td>MATH 2443, Calculus & Analytic Geometry IV</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2524, General Physics for Engineering & Science</td>
<td>4</td>
<td>MATH 3113, Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Majors</td>
<td></td>
<td>ENGR 2002, Professional Development</td>
<td>2</td>
</tr>
<tr>
<td>*CH E 2033, Chemical Engineering Fundamentals</td>
<td>3</td>
<td>CHEM 3153, Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3053, Organic Chemistry</td>
<td>3</td>
<td>CHEM 3152, Organic Chemistry Lab</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 3123, Momentum, Heat & Mass Transfer II</td>
<td>3</td>
<td>CH E 2313, Structure and Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3473, Chemical Engineering Thermodynamics</td>
<td>3</td>
<td>CH E 3333, Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CH E 3723, Numerical Methods for Engineering Computation</td>
<td>3</td>
<td>CH E 3432, Unit Operations Laboratory²</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3423, Physical Chemistry I</td>
<td>3</td>
<td>CH E 4473, Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3421, Physical Chemistry Lab</td>
<td>1</td>
<td>ENGR 3153, Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 15

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSC 1113, American Federal Government (Core III)</td>
<td>3</td>
<td>ENGR 2411, Applied Engineering Statics</td>
<td>1</td>
</tr>
<tr>
<td>CH E 4153, Process Dynamics and Control</td>
<td>3</td>
<td>ENGR 2431, Electrical Circuits</td>
<td>1</td>
</tr>
<tr>
<td>CH E 4253, Chemical Engineering Design I</td>
<td>3</td>
<td>ENGR 3431, Electromechanical Systems</td>
<td>1</td>
</tr>
<tr>
<td>CH E 4262, Chemical Engineering Design Lab</td>
<td>2</td>
<td>CH E 4273, Advanced Process Design (Capstone)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 16

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Technical Elective I</td>
<td>3</td>
<td>$Technical Elective II</td>
<td>3</td>
</tr>
<tr>
<td>#Advanced Chemistry Elective</td>
<td>3</td>
<td>#Advanced Chemistry Elective</td>
<td>3</td>
</tr>
<tr>
<td>†Approved Elective, Core IV: Western Civ. & Culture</td>
<td>3</td>
<td>†Approved Elective, Core IV: Non-Western Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 17

Note: Engineering transfer students may take ENGR 3511 in place of ENGR 1411.

Courses designated as Core I, II, III, IV or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list.

*To be chosen from the University-Wide General Education Approved Course List. Three of these 12 hours must be upper-division (3000-4000). See list in the Class Schedule.

In the College of Engineering, in order to progress in your curriculum, and as a specific graduation requirement, a grade of C or better is required in each course in the curriculum. Please refer to the General Catalog for additional enrollment limitations.

Students must successfully complete prerequisite courses (with a minimum C grade) before proceeding to the next course.

• Two college-level courses in a single foreign language are required; this may be satisfied by successful completion of 2 years in a single foreign language in high school. Students who must take foreign language at the University will have an additional 6-10 hours of coursework.

$One of the Technical Elective I, Technical Elective II, or the Advanced Chemistry elective must be CH E. Prior faculty approval is needed.

#Advanced chemistry elective must be preapproved as having significant chemistry content. This elective may be chosen from but is not limited to the following: CHEM 3523, 3653, 4333; CH E 3163, 5243, 5273, 5453, 5673.

†Technical Writing is a corequisite for CH E 3432.

*This course fulfills the Computer Literacy Requirement for graduation as required by the Oklahoma State Regents for Higher Education.

It is recommended that ENGR 2411, 2431, and 3431 be taken in the same semester. The courses are offered in sequential five-week blocks during the spring semester.

†Chemical engineering courses are sequential and usually offered only in the semester shown above. Note prerequisites on the back of this page.
Courses in Chemical, Biological & Materials Engineering (CHEM/CHBE)

2002 Introduction to Chemical Engineering Computing. Prerequisite: 2033 or concurrent, Mathematics 1823 or concurrent. Introduction to engineering computing and programming using prevalent engineering computing software; program design and development, computer-aided instruction, and application exercises in engineering computing. (F)

2033 Chemical Engineering Fundamentals. Prerequisite: Chemistry 1415 or 1425 or equivalent. Material balances involving physical equilibria and chemical reaction; energy balances; gas behavior including vapor pressure and Raoult’s Law. (F)

2313 Structure and Properties of Materials. Prerequisite: Chemistry 1415, Physics 2524. The behavior of materials under environmental conditions and environments is correlated to atomic and molecular structure and bonding. (Sp)

3113 Momentum, Heat and Mass Transfer I. Prerequisite: 2033; Mathematics 2443 or concurrent enrollment in 2443, Physics 2524 and completion or concurrent enrollment in Mathematics 3113. The common mathematical and physical basis of these processes is presented. Calculation methods for all three processes are developed. Design procedures of equipment for fluid flow, heat transfer and diffusional processes are given. (Sp)

3G3123 Momentum, Heat and Mass Transfer II. Prerequisite: 3113 and Mathematics 2443, or concurrent enrollment in Mathematics 3113. The common mathematical and physical basis of these processes is presented. Calculation methods for all three processes are developed. Design procedures of equipment for fluid flow, heat and mass transfer, kinetics and process control. Process parameters and physical properties are measured. Laboratory (Sp)

3G4733 Chemical Engineering Thermodynamics. Prerequisite: 2033. Application of the first and second laws of thermodynamics to the analysis of phase change, solution behavior and chemical equilibria and reaction. (F)

3G7323 CH E Numerical Methods for Engineering Computation. Prerequisites: 2002 or Aerospace and Mechanical Engineering 2401, or Engineering 2002 or 2003, or Computer Science e1313 or 1323, and Mathematics 3113 or 3411. Course uses specific software applications tailored toward chemical engineering. Basic methods for obtaining numerical solutions with a digital computer. Included are methods for the solutions of algebraic and transcendental equations, simultaneous linear equations, ordinary and partial differential equations, and curve fitting techniques. The methods are compared with respect to computational efficiency and accuracy. Any student who earns credit for P E 3723 cannot receive duplicate credit for AME 3723, CS 3723, or CHE 3723. This course may not be taken for graduate credit within the College of Engineering. (F)

4G153 Process Dynamics and Control. Prerequisite: 4473. Formulation of first-order models for storage tanks, chemical reactors, and heated, stirred tanks; transient and steady-state process dynamics; three-mode control of unit operations; higher-order systems and counter-current operations; analog simulation and digital control of chemical processes. (F)

4G253 Chemical Engineering Design I. Prerequisite: 33, 4473. Processes and process equipment design; technical design of units combined into plants. (F)

4G262 Chemical Engineering Design Laboratory. Prerequisite: 3333, 3432, 4473 or concurrent enrollment in 4473, and 4253 or concurrent enrollment in 4253. Experimental techniques for the acquisition of pilot plant data, using unit operations equipment and reactors for unit processes, batch and process design. Laboratory. (F)

4G273 Advanced Process Design. Prerequisite: 4253, 4262. Process and process equipment design, complete design of process plants including complete flow sheets, estimated plant costs, costs of process development, economics of investment. (Sp)

4G473 Kinetics. Prerequisite: 3473, 3723, Mathematics 3113. Fundamentals of rates, homogeneous isothermal reactions, non-isothermal reactions, reactors and design, heterogeneous reactions, fixed and fluidized bed reactors, experimental data reduction, non-ideal flow reaction systems. (Sp)

5G163 Catalysis. Prerequisite: 4473. Physical characterization of heterogeneous catalysts; catalytic activity of metals, semiconductors, solid acids, and shape-selective materials. Theories of catalytic activity, catalytic reactor, basics of catalyst surface characterization and activity measurement. (Irreg.)

5G241 Biochemical Engineering (Crosslisted with Bioengineering 5243). Prerequisite: 3123 or permission. Current bioprocesses for reaction and separation with emphasis on fundamental principles of engineering design and biochemistry and biotechnology. (Irreg.)

5G453 Polymer Science (Crosslisted with Chemistry 5453). Prerequisite: graduate standing or permission. Nomenclature, structure, properties and applications of high polymers, survey of production, processing and uses of commercial polymeric materials. (Sp)

5G673 Colloid and Surface Science (Crosslisted with Chemistry and Civil Engineering and Environmental Science 5673). Prerequisite: graduate standing or permission of instructor. Capillarity, surface thermodynamics, adsorption from vapor and liquid phases, contact angles, micelle formation, solubilization, emulsions and foams. Applications to design and operation include detergent, existence of recovery and adsorption for pollution control. (Irreg.)

5G843 Advanced Chemical Engineering Thermodynamics. Prerequisite: 3473 or permission. Advanced thermodynamics as applied to engineering problems and design. (F)

Courses in Chemistry and Biochemistry (CHEM)

1315 General Chemistry. Prerequisite: Mathematics 1503 or 1643, or math ACT equal to or greater than 23. First of a two-semester sequence in general chemistry. Topics covered: basic measurement, gas laws and changes in state, stoichiometry, atomic theory, electron configuration, periodicity, bonding, molecular structure and thermodynamics. Laboratory (F, Sp, Su) [II-LAB]

1415 General Chemistry (Continued). Prerequisite: 1315 with a minimum grade of C or a satisfactory score on the chemistry placement examination. Topics covered include: nature of elements, equilibrium, thermodynamics, acid and base properties, kinetics and electrochemistry. Laboratory (F, Sp, Su)

3053 Organic Chemistry. Prerequisite: 1415 or 1425. Two-semester sequence (3053 and 3153) covering the fundamental concepts of organic structure and reactions of the principal functional groups. Reaction mechanisms. (F, Sp, Su)

3152 Organic Chemistry Laboratory. Prerequisite: 3053 with a grade of C or better. Selected experiments are designed to illustrate the fundamental techniques used in organic research, to develop familiarity with the properties of organic compounds and to demonstrate the application of the fundamental knowledge to laboratory work. (F, Sp, Su)

3153 Organic Chemistry. Prerequisite: 3053 with a grade of “C” or better. Two-semester sequence (3053 and 3153) covering the fundamental concepts of organic structure and reactions of the principal functional groups. Reaction mechanisms. (F, Sp, Su)

3G421 Physical Chemistry Laboratory. Prerequisite: 3423 or concurrent enrollment. Physicochemical measurements and calculations. (F, Sp, Su)

3G423 Physical Chemistry I. Prerequisite: 1415 or 1425; Mathematics 2423 or concurrent enrollment. States of matter, chemical thermodynamics, equilibria, etc. (F, Sp, Su)

3G523 Physical Chemistry II. Prerequisite: 3423 with a grade of “C” or above. Continuation of 3423. Kinetics, electrochemistry, atomic and molecular states of matter, etc. (F, Sp)

3G653 Introduction to Biochemistry. Prerequisite: 3013 or 3053. Chemistry of proteins, carbohydrates, lipids, and nucleic acids; enzyme kinetics; biochemical energetics; intermediary metabolism; regulatory processes. (F)

3G633 Advanced Inorganic Chemistry—Periodic System. Prerequisite: 3013 or 3053. A survey of all the important compounds based on atomic structure and position in the Periodic System; effect of atomic size, ionization energy, and charge on the properties of elements. Inorganic nomenclature. (F)

Courses in Engineering (ENGR)

1411 Freshman Engineering Experience. Prerequisite: declared major in Engineering or permission of instructor. Required of all entering freshmen with a declared Engineering major. Lecture hours cover a variety of topics including: majors and minors; career planning; advising; and extra-curricular activities. Students also work on multi-disciplinary engineering projects in smaller groups during the lab hour. (F)

2002 Professional Development. Prerequisite: sophomore standing. Develop an understanding of engineering ethics, teamwork, leadership, and professional responsibility through the concepts of contemporary, social, and global issues. (F, Sp)

2413 Applied Engineering Statics. Prerequisites: Physics 2514 and Mathematics 2433 or concurrent enrollment in Mathematics 2433. Review of fundamentals of statics calculations and their applications to common engineering situations. (Sp)

2431 Electrical Circuits. Prerequisite: Mathematics 2423 and Physics 2524 or concurrent enrollment. Introduction to basic principles of electrical circuits. Topics include circuits (DC circuits, AC circuits, resonance, AC transients, DC transients) static electrical fields, static magnetic fields, and electronics (diodes, operational amplifiers). (F, Sp)

3431 Electromechanical Systems. Prerequisites: 2431. Introduction to basic principles of electromechanical systems. Topics include physical principles of sensing and actuation, types of sensors and actuators, and interfacing and communication protocols. (Sp)

Courses in English (ENGL)

3153 Technical Writing. Prerequisite: 1213 and Engineering or hard science majors only. Focuses on the use of the pure and applied sciences. Focuses on the forms of report writing most frequently encountered in research and industry. (F, Sp, Su)

Courses in Mathematics (MATH)

1823 Calculus and Analytic Geometry I. Prerequisite: 1523 at OU, or satisfactory score on the placement test, or, for incoming freshmen direct from high school, satisfactory score on the ACT/SAT. Topics covered include equations of straight lines; conic sections; functions, limits and continuity; differentiation; maximum-minimum theory and curve sketching. A student may not receive credit for this course and 1743. (F, Sp, Su) [I-M]

2423 Calculus and Analytic Geometry II. Prerequisite: 1823. Integration and its applications; the calculus of transcendental functions; techniques of integration; and the introduction to differential equations. A student may not receive credit for this course and 2123. (F, Sp, Su) [I-M]

2433 Calculus and Analytic Geometry III. Prerequisite: 2423. Polar coordinates, parametric equations, sequences, infinite series, vector analysis. (F, Sp, Su)

2443 Calculus and Analytic Geometry IV. Prerequisite: 2433. Vector calculus; functions of several variables; partial derivatives; gradients, extreme values and differentials of multivariate functions; multiple integrals; line and surface integrals. (F, Sp, Su)

3G3113 Introduction to Ordinary Differential Equations. Prerequisite: 2423 or concurrent enrollment. Duplicates two hours of 3431. First order ordinary differential equations, linear differential equations with constant coefficients, two-by-two linear systems, Laplace transformations, phase planes and stability. (F, Sp, Su)

Courses in Physics (PHYS)

2514 General Physics for Engineering and Science Majors. Prerequisite: Mathematics 1823 or Mathematics 1914 with grade of C or better. Not open to students with credit in 1205. Vectors, kinematics and dynamics of particles, work and energy systems of particles, rotational kinematics and dynamics, oscillations, gravitation, waves, (F, Sp, Su) [II-LAB]

2524 General Physics for Engineering and Science Majors. Prerequisite: 2514 and Mathematics 2423. Not open to students with credit in 1215. Temperature, heat, thermodynamics, electricity, magnetism, optics. (F, Sp, Su)