General Requirements

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
<th>Minimum Retention/Graduation Grade Point Averages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>145-152*</td>
<td>Overall - Combined and OU: 3.00</td>
</tr>
<tr>
<td></td>
<td>Major - Combined and OU: 3.00</td>
</tr>
<tr>
<td></td>
<td>Curriculum - Combined and OU: 3.00</td>
</tr>
</tbody>
</table>

*A minimum grade of C is required for each course in the curriculum.

Freshman

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGL 1113, Prin. of English Composition (Core I)</td>
<td>3</td>
<td>BOT 1114, General Botany, or</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 1315, General Chemistry (Core II)</td>
<td>5</td>
<td>ZOO 1114, Introductory Zoology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 1823, Calculus & Analytic Geometry I (Core I)</td>
<td>3</td>
<td>ENGL 1213, Prin. of English Composition (Core I), or</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>HIST 1483, U.S., 1492-1865, or</td>
<td>3</td>
<td>EXPO 1213, Expository Writing (Core I)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1493, U.S., 1865-Present (Core IV)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*CEES 1112, Intro. to Civil Engr. & Envir. Science</td>
<td>1</td>
<td>CHEM 1415, General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ENGR 1410, Freshman Engineering Orientation I</td>
<td>0</td>
<td>MATH 2423, Calculus & Analytic Geometry II (Core I)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENGR 1420, Freshman Engineering Orientation II</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHEM 3053, Organic Chemistry</td>
<td>3</td>
<td>CHEM 3153, Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 2514, Gen. Physics for Engineering & Science, or</td>
<td>4</td>
<td>MBIO 2815, Introduction to Microbiology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2414, Gen. Physics for Life Sciences</td>
<td>3</td>
<td>PHYS 2524, General Physics for Engineering & Science, or</td>
<td>4</td>
</tr>
<tr>
<td>ME</td>
<td>CEES 2313, Intro. to Mass Balance and Fate Process</td>
<td>3</td>
<td>CEES 2322, General Physics for Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$CEES 1213, Computing Applications in CEES</td>
<td>3</td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$Approved Elective: Artistic Forms (Core IV)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
<td></td>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZOO 3403, Principles of Ecology, or</td>
<td>3</td>
<td>ANTH 4623, Approaches to Cross-Cultural Human Problems or approved substitute (Core IV, Non-Western Civ.)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BOT 3453, Principles of Plant Ecology</td>
<td>3</td>
<td>or approved substitute (Core IV, West. Civ. & Culture)</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>ENGL 3153, Technical Writing</td>
<td>3</td>
<td>P SC 1113, American Federal Government (Core III)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CEES Elective, or</td>
<td>3</td>
<td>CEEES 4863, Environmental Assessment Methodologies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CEES 4603, Environmental Protection</td>
<td>3</td>
<td>CEES Elective</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>HSCI 2333, Inventing the Modern World, or approved substitute (Core IV, West. Civ. & Culture)</td>
<td>3</td>
<td>CEES 3334, Measurements in CEES</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$CEES Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEES 4114, Aquatic Chemistry</td>
<td>4</td>
<td>P SC 3233, Environmental Policy & Administration, or</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>CEES 4324, Environmental Biology & Ecology</td>
<td>4</td>
<td>CEES 4463, Environmental Evaluation & Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$CEES Track Elective</td>
<td>3</td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
</tr>
<tr>
<td>ME</td>
<td>$CEES 4913, Environmental Science Capstone (Capstone)</td>
<td>3</td>
<td>$CEES 4913, Environmental Science Capstone (Capstone)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$CEES 1000, CEES Seminar</td>
<td>0</td>
<td>$CEES Track Elective</td>
<td>3</td>
</tr>
<tr>
<td>ME</td>
<td>$CEES 4813, Professional Practice</td>
<td>3</td>
<td>$CEES Track Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$Approved Elective: Social Science (Core III)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>14</td>
<td></td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$CEES 5980, Thesis Research, or Graduate-level Elective</td>
<td>2-3</td>
<td>CEES 5021, Technical Communications</td>
<td>1</td>
</tr>
<tr>
<td>ME</td>
<td>CEES Graduate-level Elective</td>
<td>3-4</td>
<td>$CEES 5980, Thesis Research, or Graduate-level Elective</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>CEES Graduate-level Elective</td>
<td>3</td>
<td>$CEES 6210, Special Topics</td>
<td>2</td>
</tr>
<tr>
<td>ME</td>
<td>CEES Graduate-level Elective</td>
<td>3</td>
<td>$CEES Graduate-level Elective</td>
<td>4</td>
</tr>
<tr>
<td>ME</td>
<td>CEES Graduate-level Elective</td>
<td>3</td>
<td>$CEES Graduate-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>11-13</td>
<td></td>
<td>TOTAL CREDIT HOURS</td>
<td>12-13</td>
</tr>
</tbody>
</table>

1 To be chosen from the University-Wide General Education Approved Course List. Three of these 12 hours must be upper-division (3000-4000). See list in the Class Schedule.

In the College of Engineering, in order to progress in your curriculum, and as a specific graduation requirement, a grade of C or better is required in each course in the curriculum. Please refer to the General Catalog for additional enrollment limitations.

Students must successfully complete prerequisite courses (with a minimum C grade) before proceeding to the next course.

* Two college-level courses in a single foreign language are required; this may be satisfied by successful completion of 2 years in a single foreign language in high school. Students who must take foreign language at the University will have an additional 6-10 hours of coursework.

The Environmental Science electives will be selected from CEES courses with the approval of the adviser.

* Students must choose a specialization in either Environmental Science or Environmental Management.

*This course fulfills the Computer Literacy Requirement for graduation as required by the Oklahoma State Regents for Higher Education.

Students must complete a minimum of four semesters of CEES 1000.
Environmental Science, Accelerated BS/MS—0922N—Page 2

COURSES IN ANTHROPOLOGY
4623 Approaches to Cross-Cultural Human Problems. Prerequisite: 1113 or junior standing. Introduces students to the complex problems of contemporary global-scale cultures and helps them better understand their place on this global arena. This course will look at specific institutional issues and problems, and relate them to processes occurring in many parts of the world. (F.) [IV-NW]

COURSES IN BOTANY (BOT)
1114 General Botany. Previous course in chemistry (high school or college) recommended. Full/Part: Arts and Sciences. Basic principles and structure in plants; their relation to factors in the environment; reproduction; heredity, heritable and nonheritable variations in plants and their causes and consequences are studied. Scientific procedures are acquired through application and discussion. Laboratory (F, Sp, Su) [I-B-LAB]

COURSES IN CHEMISTRY AND BIOCHEMISTRY (CHEM)
1315 General Chemistry. Prerequisite: Mathematics 1503 or 1643, or math ACT equal to or greater than 23. First of a two-semester sequence in general chemistry. Topics covered: basic atomic structure and laws; changes in state, stoichiometry, atomic theory, electron configuration, periodicity, bonding, molecular structure and thermochecmy. Laboratory (F, Sp, Su)

1415 General Chemistry (Continued). Prerequisite: 1315 with a minimum grade of C or a satisfactory score on the chemistry placement examination. Topics covered include: nature of solutions, equilibrium, thermodynamics, acids and base properties, kinetics and electrophotometry. Laboratory (F, Sp, Su)

3053 Organic Chemistry. Prerequisite: 1415 or 1425. Two-semester sequence (3053 and 3153) covering the fundamental concepts of organic structure and reactions of the principal functional group classes. Laboratory (F, Sp, Su)

3153 Organic Chemistry. Prerequisite: 3053 with a grade of C or better. Two-semester sequence (3053 and 3153) covering the fundamental concepts of organic structure and reactions of the principal functional group functions. Reaction mechanisms. (F, Sp, Su)

COURSES IN CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE (CEES)
1000 CEES Seminar. Seminar provides a common meeting time for students and faculty for department activities, such as invited speakers, project presentations, educational surveys, courses in engineering and policy development. Full/Part: Arts and Sciences. Students will meet every semester that they are matriculated in CEES at OU after the freshman year, but in no case can a student graduate without successfully completing four semesters of seminar. (F, Sp)

1112 Introduction to Civil Engineering and Environmental Science. Introduction to fundamental concepts: problem solving and design, and simple computing software for architectural, civil or environmental engineering and environmental scientists. (F, Sp, Su)

1213 Computing Applications in Civil Engineering and Environmental Science. Prerequisite: Mathematics 2423, Physics 2514 or concurrent enrollment. Introduction to a computer-aided engineering and environmental science. Introduction to application software and tools relevant to civil engineering and environmental science such as AutoCAD, Java and spreadsheets. (F)

2313 Introduction to Mass Balance and Fate Processes. Prerequisite: Chemistry 1415, Mathematics 2423. Introduction to environmental mass balance and fate processes. Studies of mass and energy transfer, introductory environmental chemistry, water quality parameters, mathematics of growth, statistics and data analysis, introduction to environmental laws and regulations. (F)

2323 Environmental Transport and Fate Process. Prerequisite: 2313. Physicochemical and biological processes controlling contaminant distribution and fate; hydrological processes controlling contaminant transport; sources, prevention and remediation of environmental pollutants. (Sp)

3334 Measurements in CEES. Prerequisites: Mathematics 2423, Physics 2424 or Physics 2423. Introduction to measurement (laboratory and field techniques), data analysis and interpretation and emphasis on relationship of structure, civil or environmental engineering and environmental science problems. Topics include statistics, land surveying, remote sensing, GIS, environmental sampling and analysis and sensors. Laboratory (Sp)

4114 Aquatic Chemistry (Slashedlist with 1114). Prerequisite: Senior standing and one year of general chemistry. Environmental kinetics and thermodynamics in aquatic systems; acid base, precipitation/solubility, metal complexation and oxidation/reduction reactions; environmental colloidal and solid-liquid interface chemistry. No student may earn credit for both 4114 and 5114 or Environmental Science 4114 and 5114. Laboratory (F, Sp, Su)

4324 Environmental Biology and Ecology (Slashedlist with 5324). Prerequisite: 4603, 4863, and Civil Engineering 3334. Examines applied environmental biology; biological consequences of environmental impacts; mitigation of environmental impacts via biogeochemical, ecological and microbial processes. No student may earn credit for both 4324 and 5324. Laboratory (F, Sp, Su)

4463 Environmental Evaluation and Management (Slashedlist with 5463). Prerequisite: senior standing. Broad overview of natural resources management with attention to techniques used in decision making and analysis. Class discussion and readings include a review of measures used to value natural systems (e.g., benefit cost analysis) and the role of private and public institutions in management. No student may earn credit for both 4463 and 5463. (F)

4603 Environmental Protection (Slashedlist with 5603). Prerequisite: senior standing or permission of instructor. Mitigation of human health and environmental problems with a focus on differences between developing and developed countries. Topics include baseline health indicators, air and water quality, industrial hygiene, and risk assessment, water and wastewater, air quality, solid and hazardous waste, and environmental management systems. No student may earn credit for both 4603 and 5603. (F)

4813 Environmental Science and Environmental Engineering Professional Practice. Prerequisite: senior standing in environmental science or environmental engineering, 4603 or Civil Engineering 4803. Professional practice involving issues in CEES or permission of instructor. Develop knowledge of various environmental assessment methodologies or “tools”, including assessments of socio-economic, physical/chemical and biological impacts at the pre-project, operational and post-project phases on human and non-human components of the environment. No student may earn credit for both 4813 and 5813. (F)

4913 Environmental Science Capstone. Prerequisite: Civil Engineering 4803 and senior standing. Solution of major environmental problems by a team approach of disciplines. Problems to be varied within the area of environmental science according to the student’s major interest. The Capstone Project is a two-hour lab staff supervision. (Sp, Su)

G5021 Technical Communications. Prerequisite: CEES graduate standing or permission of instructor. Focused on enabling students to improve oral and written communications skills. Examines appropriate formats for various technical publications, as well as methods and practices for developing effective oral presentations. Each student will be required to develop an oral presentation about his/her written project. (F)

G5900 Research for Master’s Thesis. Variable enrollment, two to nine hours; maximum credit applicable toward degree, four hours. (F, Sp, Su)

G6210 Environmental Science Special Topics. 1 to 6 hours. Prerequisite: graduate standing. May count with change of topic; may count with change of topic; may count with change of topic; may count with change of topic. (F, Sp, Su)

COURSES IN ENGINEERING (ENGR)
1410 Freshman Engineering Orientation I. Prerequisite: declared major in engineering. All entering freshmen with a declared engineering major are required to enroll. One hour of this seminar a week is in a large group setting where all students meet and cover details on all engineering disciplines. Additional topics will be continuums of majors, success in the College of Engineering, success at the University of Oklahoma, study abroad programs, advising issues, graduate school opportunities, career planning, and information related to technical/honor societies and participation. A second hour a week is a required small group session with an upper-class mentor from the College of Engineering Dean’s Leadership Council. This second hour will focus on basic enrollment and retention strategies such as adding and dropping classes and choosing electives in addition to a weekly topic area. (F)

1420 Freshman Engineering Orientation II. Prerequisite: declared major in engineering. All entering freshmen with a declared engineering major are required to enroll in this spring continuation of Orientation I. One hour per week in a small group setting where attendance is required and an upper-class mentor facilitator will focus on details on all engineering disciplines. Additional topics will be continuums of majors, success in the College of Engineering, success at the University of Oklahoma, study abroad programs, advising issues, graduate school opportunities, career planning, and information related to technical/honor societies and participation. A second hour a week is a required small group session with an upper-class mentor from the College of Engineering Dean’s Leadership Council. This second hour will focus on basic enrollment and retention strategies such as adding and dropping classes and choosing electives in addition to a weekly topic area. (Sp)

COURSES IN ENGLISH (ENGL)
3153 Technical Writing. Prerequisite: 1213 and Engineering or hard science majors only. For students of the pure and applied sciences. Focuses on the forms of report writing most frequently encountered in research and industry. (F, Sp, Su)

COURSES IN HISTORY OF SCIENCE (HSCI)
2333 Inventing the Modern World. A survey of the history of technology since 1500. The course emphasizes historical context and cultural meanings, not technical details, as it explores the key steps in the construction of our modern technological world. Materials include literature and film as well as non-fiction. (F) [IV-WC]

COURSES IN MATHEMATICS (MATH)
1823 Calculus and Analytic Geometry I. Prerequisite: 1523 at OU, or satisfactory score on the placement test, or satisfactory score on the ACT/SAT. Topics covered include equations of straight lines; conic sections; functions, limits and continuity; differentiation; maximum-minimum theory and curve sketching. A student may not receive credit for this course and 1743. (F, Sp, Su) [I-M]

2123 Calculus and Analytic Geometry II. Prerequisite: 1823. Functions, limits, continuity, derivatives, and applications; the calculus of transcendental functions; techniques of integration; and the introduction to differential equations. A student may not receive credit for this course and 2123. (F, Sp, Su) [I-M]

COURSES IN MICROBIOLOGY (MBIO)
2815 Introduction to Microbiology. Prerequisite: one course in college chemistry. Introduction to microorganisms as biological entities. Survey of the roles of microorganisms in the ecosystem. Application of microorganisms to industrial and environmental problems. Discussion of microorganisms as agents of human disease and host/reservoir systems. (F, Sp, Su) [I-B-LAB]

COURSES IN PHYSICS (PHYS)
2514 General Physics for Engineering and Science Majors. Prerequisite: Mathematics 1823. Not open to students with credit in 1205. Vectors, kinematics and dynamics of particles, work and energy systems of particles, rotational kinematics and dynamics, oscillations, gravitation, fluid mechanics, waves. (Sp, Su) [I-II]

2524 General Physics for Engineering and Science Majors. Prerequisite: 2514 and Mathematics 1823. Phenomenology of human issue and social credit in 1215. Temperature, heat, thermodynamics, electricity, magnetism, optics. (F, Sp, Su)

COURSES IN ZOOLOGY (ZOO)
1114 Introductory Zoology. Major biological principles and concepts as illustrated in the structure, function and evolution of animals. Emphasis is on self-regulatory mechanisms, especially in the vertebrates, and their adaptive significance. (F, Sp, Su) [I-II-NL]

G3403 Principles of Ecology. Prerequisite: eight hours of zoology. Patterns of environmental and biocultural communities; the processes maintaining these patterns. Laboratory (Sp)